Python数据结构与算法(9)---优先级队列queue

前言

queue库提供了一个适用于多线程编程的先进先出(FIFO)数据结构,可以用来在生产者与消费者线程之间安全地传递消息或其他数据。

它会为调用者处理锁定,使多个线程可以安全而更容易地处理同一个Queue实例。Queue的大小可能受限,以限制内存使用或处理。

基本用法

Queue类实现了一个基本的先进先出容器。使用put()将元素增加到这个序列的一端,使用get()从另一端删除。具体代码如下所示:

import queue

q = queue.Queue()

for i in range(1, 10):
    q.put(i)
while not q.empty():
    print(q.get(), end="  ")

运行之后,效果如下:
基本用法

这里我们依次添加1到10到队列中,因为先进先出,所以出来的顺序也与添加的顺序相同。

LIFO队列

既然有先进先出队列queue,那么数据结构中肯定也有后进先出的队列。后进先出的队列为:LifoQueue,示例如下:

import queue

q = queue.LifoQueue()

for i in range(1, 10):
    q.put(i)
while not q.empty():
    print(q.get(), end="  ")

运行之后,效果如下:
后进先出

优先队列

在操作系统中,我们常常会根据优先级来处理任务,比如系统的优先级最高,我们肯定优先处理系统任务,然后才处理用户的任务。同样,queue库给我们提供了PriorityQueue来处理优先级的队列。

示例如下:

import queue
import threading


class Job:
    def __init__(self, priority, desc):
        self.priority = priority
        self.desc = desc
        print("New Job:", desc)
        return

    def __eq__(self, other):
        try:
            return self.priority == other.priority
        except AttributeError:
            return NotImplemented

    def __lt__(self, other):
        try:
            return self.priority > other.priority
        except AttributeError:
            return NotImplemented


def process_Job(q):
    while True:
        next_job = q.get()
        print(next_job.desc)
        q.task_done()


q = queue.PriorityQueue()

q.put(Job(5, "Five Job"))
q.put(Job(15, "Fifteen Job"))
q.put(Job(1, "One Job"))

workers = [
    threading.Thread(target=process_Job, args=(q,)),
    threading.Thread(target=process_Job, args=(q,)),
]

for work in workers:
    work.setDaemon(True)
    work.start()

q.join()

运行之后,效果如下:
优先级

这里,我们默认数值越大优先级越高,可以看到15先执行,然后再是5,1任务。这个例子展现了有多个线程在处理任务时,要根据get()时队列中元素的优先级来处理。

  • 11
    点赞
  • 1
    收藏
  • 打赏
    打赏
  • 14
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:酷酷鲨 设计师:CSDN官方博客 返回首页
评论 14

打赏作者

李元静

您的鼓励就是我创作的动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值